

Микросхема статического оперативного запоминающего устройства (СОЗУ) емкостью 16М (1М × 16 бит) К1645РУ6У, К1645РУ6У1, К1645РУ61У1

ГГ – год выпуска НН – неделя выпуска

Основные характеристики микросхемы:

- Информационная емкость 16М (1М × 16 бит);
- Напряжение питания 3,0 3,6 В;
- Время выборки данных по адресу:
 - К1645РУ6У, К1645РУ6У1 не более 10 нс;
 - К1645РУ61У, К1645РУ61У1 не более 12 нс;
- Динамический ток потребления не более 200 мА;
- Ток потребления в режиме хранения не более 30 мА;
- К1645РУ61У, К1645РУ61У1 совместимы по входам с 5 В;
- Тепловое сопротивление кристалл-корпус не более 4,0 °C/Вт;
- Масса микросхем:
 - К1645РУ6У, К1645РУ61У не более 2,5 г;
 - К1645РУ6У1, К1645РУ61У1 не более 1,1 г.
- Температурный диапазон:

Обозначение	Температурный диапазон, °С
К1645РУ6У	от –60 до 100
К1645РУ6У1	от -60 до 100
К1645РУ61У	от -60 до 125
К1645РУ61У1	от –60 до 125

Тип корпуса:

- микросхемы К1645РУ6У, К1645РУ61У поставляются в 64-выводном металлокерамическом корпусе H18.64-2B;
- микросхемы K1645PУ6У1, K1645PУ61У1 поставляются в 64-выводном металлокерамическом корпусе МК 5153.64-3.

Общее описание и область применения микросхемы

Микросхемы интегральные К1645РУ6У, К1645РУ6У1, К1645РУ61У, К1645РУ61У, К1645РУ61У1 (далее — микросхемы) — статические оперативные запоминающие устройства (СОЗУ) с произвольной выборкой информационной емкостью 16М и организацией 1М слов по 16 бит — предназначены для применения в блоках и устройствах памяти общих и специальных вычислительных систем с большими потоками обработки информации.

Содержание

1	Структурная блок-схема	3
2	Условно-графическое обозначение	
3	Описание выводов	
4	Указания по применению и эксплуатации	
5	Описание функционирования микросхемы	
6	Типовая схема включения	
7	Типовые зависимости	
8	Электрические параметры микросхемы	15
9	Предельно-допустимые характеристики микросхемы	
10	Справочные параметры	
	Габаритные чертежи микросхемы	
	Информация для заказа	

1 Структурная блок-схема

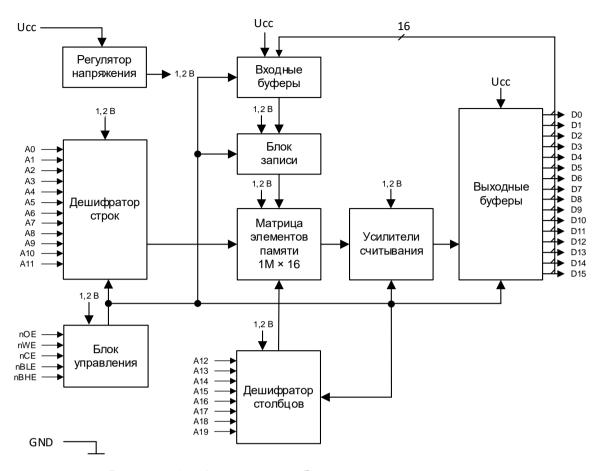


Рисунок 1 – Структурная блок-схема микросхемы

2 Условно-графическое обозначение

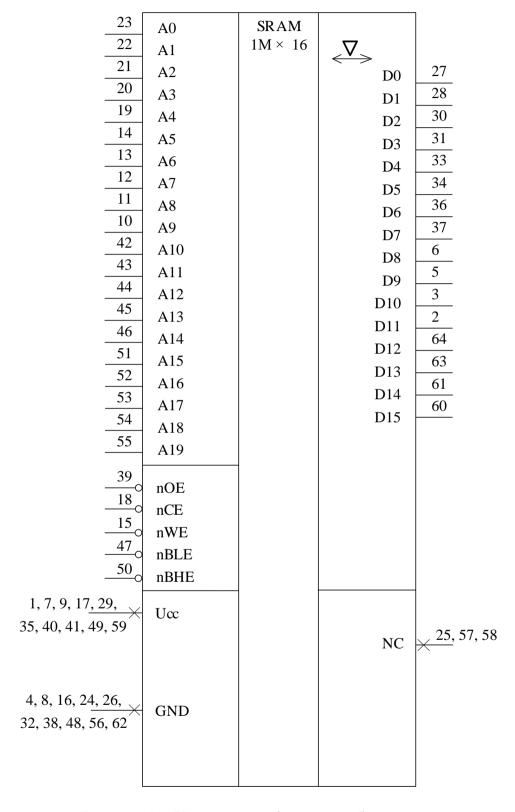


Рисунок 2 – Условное графическое обозначение

3 Описание выводов

Таблица 1 – Описание выводов

Номер вывода	Обозначение вывода	Назначение и функции вывода
<u>вывода</u>	Ucc	Питание
2	D11	Вход/выход данных
3	D10	Вход/выход данных
4	GND	Общий
5	D9	Вход/выход данных
6	D8	Вход/выход данных
7	Ucc	Питание
8	GND	Общий
9	Ucc	Питание
10	A9	Вход сигнала адреса
11	A8	Вход сигнала адреса
12	A7	Вход сигнала адреса
13	A6	Вход сигнала адреса
14	A5	Вход сигнала адреса
15	nWE	Вход сигнала разрешения записи
16	GND	Общий
17	Ucc	Питание
18	nCE	Вход сигнала разрешения выборки
19	A4	Вход сигнала адреса
20	A3	Вход сигнала адреса
21	A2	Вход сигнала адреса
22	A1	Вход сигнала адреса
23	A0	Вход сигнала адреса
24	GND	Общий
25	NC	Не используется
26	GND	Общий
27	D0	Вход/выход данных
28	D1	Вход/выход данных
29	Ucc	Питание
30	D2	Вход/выход данных
31	D3	Вход/выход данных
32	GND	Общий
33	D4	Вход/выход данных
34	D5	Вход/выход данных
35	Ucc	Питание
36	D6	Вход/выход данных

Номер	Обозначение	Назначение и функции вывода
вывода	вывода	назначение и функции вывода
37	D7	Вход/выход данных
38	GND	Общий
39	nOE	Вход сигнала разрешения выхода данных
40	Ucc	Питание
41	Ucc	Питание
42	A10	Вход сигнала адреса
43	A11	Вход сигнала адреса
44	A12	Вход сигнала адреса
45	A13	Вход сигнала адреса
46	A14	Вход сигнала адреса
47	nBLE	Вход сигнала разрешения выборки младших разрядов данных
48	GND	Общий
49	Ucc	Питание
50	nBHE	Вход сигнала разрешения выборки старших разрядов данных
51	A15	Вход сигнала адреса
52	A16	Вход сигнала адреса
53	A17	Вход сигнала адреса
54	A18	Вход сигнала адреса
55	A19	Вход сигнала адреса
56	GND	Общий
57	NC	Не используется
58	NC	Не используется
59	Ucc	Питание
60	D15	Вход/выход данных
61	D14	Вход/выход данных
62	GND	Общий
63	D13	Вход/выход данных
64	D12	Вход/выход данных

4 Указания по применению и эксплуатации

При ремонте аппаратуры и измерении параметров микросхем замену микросхем необходимо проводить только при отключенных источниках питания.

Инструмент для пайки (сварки) и монтажа не должен иметь потенциал, превышающий 0,3 В относительно шины Общий.

Неиспользуемые входы микросхемы должны быть подключены к напряжению питания U_{CC} или на шину Общий GND.

Выводы 25 и 57, неиспользуемые согласно таблице 1, допускается подключать к шинам питания, общий или оставлять неподключенными.

Запрещается подведение каких-либо электрических сигналов (в том числе шин Питание, Общий) к выводу 58, неиспользуемому согласно таблице 1.

Крышка микросхем 1645РУ6У, 1645РУ6У1, 1645РУ61У, 1645РУ61У1 электрически соединена с выводом 32 (Общий).

Металлизированная площадка обратной стороны корпуса микросхем 1645РУ6У1, 1645РУ61У1 электрически соединена с монтажной площадкой кристалла.

Металлизированные площадки обратной стороны корпуса микросхем 1645РУ6У1, 1645РУ61У1 рекомендуется соединить с шиной Общий. Запрещается подведение каких-либо электрических сигналов, кроме шины Общий к металлизированным площадкам обратной стороны микросхем 1645РУ6У1, 1645РУ61У1.

Максимальное значение длительности фронта и спада входных сигналов не более 100 нс, динамические параметры при этом не гарантируются.

Рекомендуемая длительность фронта подачи напряжения питания на микросхему не менее $10\,$ мкс. Время до начала первого обращения к памяти не менее $50\,$ мкс от достижения $80\,$ % значения напряжения питания.

Для обеспечения максимального быстродействия микросхемы длительность фронтов входных сигналов должна быть не более 3 нс.

Порядок подачи и снятия напряжения питания и входных сигналов на микросхему должен быть следующим:

- подача (включение микросхемы): общий, питание, входные сигналы или одновременно;
- снятие (выключение микросхемы): в обратном порядке или одновременно.

5 Описание функционирования микросхемы

Микросхемы представляют собой СОЗУ с произвольной выборкой с информационной емкостью 16М и организацией 1М слов по 16 бит. Микросхемы разработаны по КМОП-технологии с минимальными проектными нормами 0,065 мкм с одним уровнем поликремния и шестью уровнями металла. В качестве запоминающего элемента использована шеститранзисторная ячейка памяти.

Типовые режимы работы СОЗУ обеспечиваются управляющими сигналами nCE, nOE, nWE, nBHE, nBLE на соответствующих входах микросхемы в соответствии с таблицей истинности (см. таблицу 2) и временными диаграммами (см. рисунки 3-8). Выводы A0-A19 являются адресными входами, выводы данных D0-D15 являются двунаправленными, их состояние зависит от логических уровней управляющих сигналов.

nCE	nOE	nWE	nBLE	nBHE	D ₀ -D ₇	D ₈ -D ₁₅	Режим
Н	X	X	X	X	Z	Z	Хранение данных
L	L	Н	L	L	Выходные данные	Выходные данные	Считывание данных всех разрядов
L	L	Н	L	Н	Выходные данные	Z	Считывание данных младших разрядов
L	L	Н	Н	L	Z	Выходные данные	Считывание данных старших разрядов
L	X	L	L	L	Входные данные	Входные данные	Запись данных всех разрядов
L	X	L	L	Н	Входные данные	X	Запись данных младших разрядов
L	X	L	Н	L	X	Входные данные	Запись данных старших разрядов
L	Н	Н	X	X	Z	Z	Запрет выхода данных при считывании

Примечание – Обозначения в таблице:

Н – состояние высокого уровня,

L – состояние низкого уровня,

Х – состояние высокого или низкого уровня,

Z – выход в состоянии «Выключено»

При напряжении высокого уровня на входе nCE микросхема находится в режиме хранения и ее состояние не зависит от других управляющих сигналов, сигналов адреса и сигналов данных. Выходы микросхемы при этом находятся в состоянии «Выключено» (состояние высокого импеданса). В этом режиме микросхема потребляет минимальную мощность. Ток потребления в режиме хранения зависит от напряжения на выводах D0 – D15 и будет минимальным, если подать на них логическую «1» или логический «0». Операции записи и считывания возможны при активном сигнале nCE (напряжение низкого уровня на входе nCE).

При напряжении низкого уровня на входе nWE происходит запись информации в определенные ячейки памяти в соответствии с сигналами на входах данных (D0 – D15), на управляющих входах nBLE, nBHE и адресным кодом на входах адреса (A0 – A19). По каждому адресному коду происходит выборка шестнадцати ячеек памяти (по одной в каждом разряде) при напряжении низкого уровня на входах nBLE, nBHE и записывается шестнадцать бит входной информации (по одному в каждую ячейку). Если на входе nBLE (nBHE) напряжение высокого уровня, то записи в младшие (старшие) разряды не происходит. Низкий уровень на входе nWE переводит выходы микросхемы в состояние «Выключено» (состояние высокого импеданса) независимо от уровня сигнала на входе nOE.

Считывание происходит при напряжении высокого уровня на входе nWE, информация появляется на выходах микросхемы в соответствии с адресным кодом на входах адреса и наличии напряжения низкого уровня на входах nBLE, nBHE, nOE. При наличии на входе nBLE (nBHE) напряжения высокого уровня выходы младших (старших) разрядов данных находятся в состоянии «Выключено» (состояние высокого импеданса). Сигнал nOE управляет выходными буферами, обеспечивая их переход в состояние «Выключено» (при напряжении высокого уровня на входе nOE) независимо от состояния других управляющих сигналов.

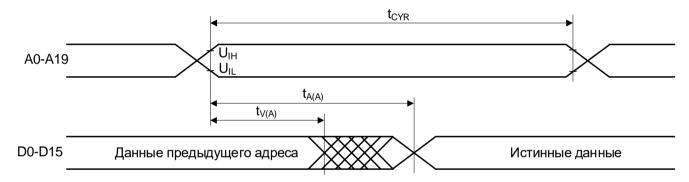
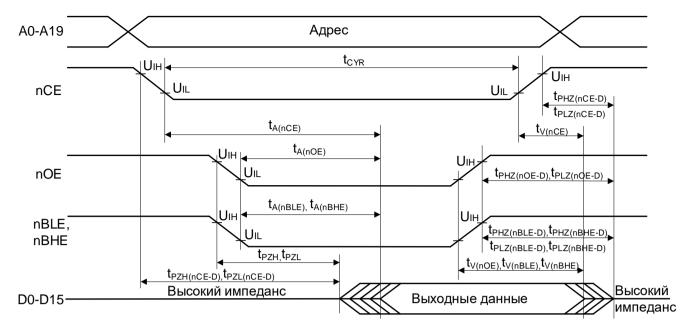



Рисунок 3 — Диаграмма цикла чтения по адресу (nCE = L; nWE = H; nOE = L; nBLE = L или nBHE = L, или оба сигнала в состоянии низкого уровня)

 $t_{PZL} - t_{PZL(nOE-D)}, t_{PZL(nBLE-D)}, t_{PZL(nBHE-D)},$

 $t_{PZH}-t_{PZH(nOE-D),}\ t_{PZH(nBLE-D),}t_{PZH(nBHE-D)}$

Рисунок 4 — Диаграмма цикла чтения по сигналу nCE, nOE, nBLE, nBHE (nWE = H). Адрес должен быть определен до или одновременно с переходом сигнала nCE в состояние низкого уровня

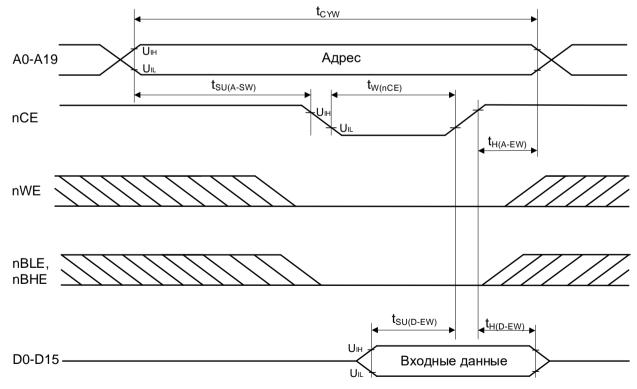


Рисунок 5 – Диаграмма цикла записи по сигналу nCE (nOE = L или H)

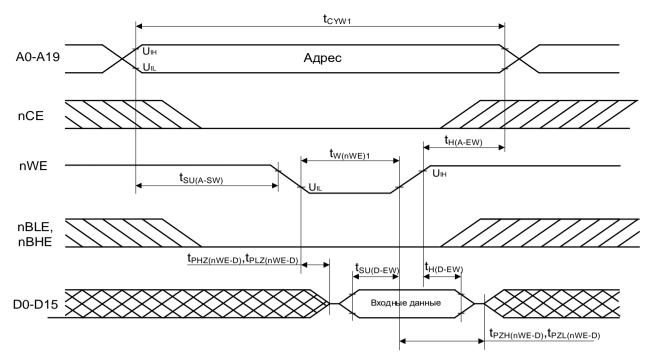


Рисунок 6 - Диаграмма цикла записи по сигналу <math>nWE (nOE = L)

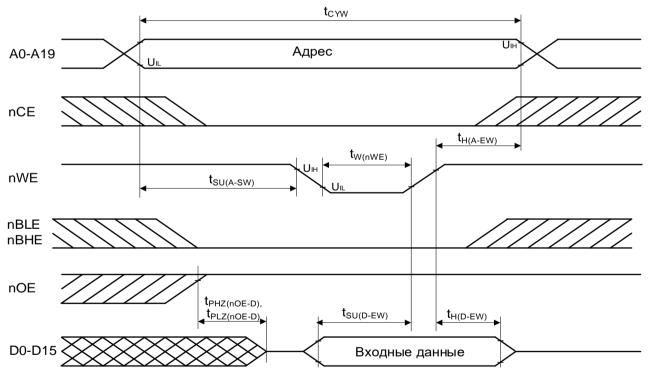


Рисунок 7 – Диаграмма цикла записи по сигналу nWE (nOE = H)

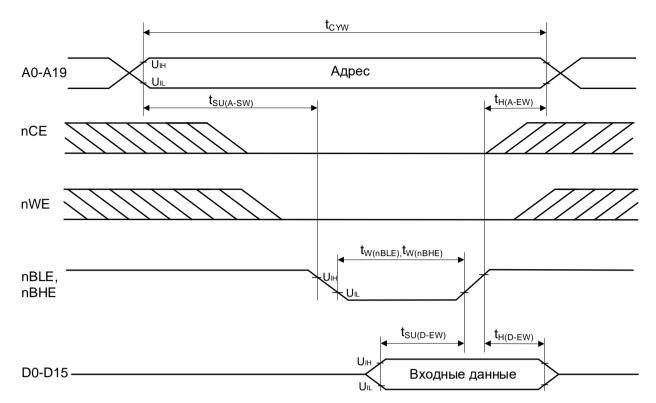
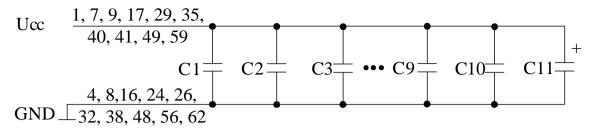



Рисунок 8 – Диаграмма цикла записи по сигналу nBLE, nBHE (nOE = H)

6 Типовая схема включения

 $C1 \div C10$ – конденсаторы емкостью 0,1 мк Φ ;

С11 – конденсатор емкостью 10 мкФ.

Конденсаторы С1 – С10 располагаются как можно ближе к каждому выводу питания.

Рисунок 9 – Типовая схема подключения питания

7 Типовые зависимости

Раздел в разработке

8 Электрические параметры микросхемы

Таблица 3 – Электрические параметры микросхем при приёмке и поставке

Наименование параметра,	нное чение гетра	-	Норма параметра			
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С		
К1645РУ6У, К1645РУ6У1						
Выходное напряжение высокого уровня, В	U _{OH}	2,4	_			
Выходное напряжение низкого уровня, В	U _{OL}	_	0,4			
Ток утечки высокого уровня на входе, мкА	I _{ILH}	-2	2			
Ток утечки низкого уровня на входе, мкА	I _{ILL}	-2	2			
Выходной ток высокого уровня в состоянии «Выключено», мкА	I _{OZH}	-2	2			
Выходной ток низкого уровня в состоянии «Выключено», мкА	I _{OZL}	-2	2	25,		
Ток потребления в режиме хранения, мА, КМОП уровни на входах	I _{CCS}	_	30	100, - 60		
Динамический ток потребления, мА	I _{OCC}	_	200			
Время выборки данных по адресу, нс	t _{A(A)}	_	10			
Время выборки данных по сигналу пСЕ, нс	t _{A(nCE)}	_	10			
Время выборки данных по сигналу nOE, нс	t _{A(nOE)}	_	7			
Время выборки данных по сигналу nBLE, нс	t _{A(nBLE)}	_	7			
Время выборки данных по сигналу пВНЕ, нс	t _{A(nBHE)}	_	7			
К1645РУ61У, К1	645РУ61У1					
Выходное напряжение высокого уровня, В	U _{OH}	2,4	_			
Выходное напряжение низкого уровня, В	Uol	_	0,4			
Ток утечки высокого уровня на входе, мкА	I _{ILH}	- 5	5			
Ток утечки низкого уровня на входе, мкА	I _{ILL}	-2	2			
Выходной ток высокого уровня в состоянии «Выключено», мкА	I _{OZH}	- 5	5	25,		
Выходной ток низкого уровня в состоянии «Выключено», мкА	I _{OZL}	-2	2	125, - 60		
Ток потребления в режиме хранения, мА, КМОП уровни на входах	I _{CCS}	_	30			
Динамический ток потребления, мА	Iocc	_	200			
Время выборки данных по адресу, нс	t _{A(A)}	_	12			
Время выборки данных по сигналу пСЕ, нс	t _{A(nCE)}	_	12			

Наименование параметра,	яное чение тетра	Но _ј парал	ратура ы, °С	
единица измерения, режим измерения	Буквенное обозначени параметра	не менее	не более	Температу среды, °С
Время выборки данных по сигналу пОЕ, нс	t _{A(nOE)}	_	8	25,
Время выборки данных по сигналу nBLE, нс	t _{A(nBLE)}	_	8	125,
Время выборки данных по сигналу пВНЕ, нс	t _{A(nBHE)}	_	8	- 6 0

Микросхемы устойчивы к воздействию статического электричества с потенциалом не менее 2000 В.

9 Предельно-допустимые характеристики микросхемы

Таблица 4 – Предельно-допустимые режимы эксплуатации и предельные режимы микросхем

		Норма параметра				
Наименование параметра, единица измерения	Буквенное	Предельно- допустимый режим		Предельный режим		
	90	не менее	не более	не менее	не более	
Напряжение питания, В	Ucc	3,0	3,6	_	3,9	
Выходной ток высокого уровня, мА	Іон	-4	_	-8	_	
Выходной ток низкого уровня, мА	I_{OL}	_	4	_	8	
Время установления сигнала входных данных относительно окончания записи, нс	t _{SU(D-EW)}	6	_	_	_	
Время удержания сигнала входных данных относительно окончания записи, нс	t _{H(D-EW)}	2	_		_	
Емкость нагрузки, пФ	$C_{\rm L}$	_	30	_	500	
К1645РУ6У, К1	645РУ6У	1				
Входное напряжение высокого уровня, В	U_{IH}	0,9·U _{CC}	Ucc	_	U _{CC} +0,3	
Входное напряжение низкого уровня, В	U_{IL}	0	$0,1 \cdot U_{CC}$	-0,3	_	
Напряжение высокого уровня, прикладываемое к выходу в состоянии «Выключено», В	Uozh	_	Ucc	_	U _{CC} +0,3	
Напряжение низкого уровня, прикладываемое к выходу в состоянии «Выключено», В	Uozl	0	_	-0,3	_	
Время цикла считывания информации, нс	t _{CYR}	10	_	_	_	
Время цикла записи информации, нс	tcyw	10	_	_	_	
Время цикла записи информации при nOE = 0, нс	t _{CYW1}	13	_	_	_	
Время установления адреса относительно начала записи, нс	t _{SU(A-SW)}	0	_	_	_	
Время удержания сигнала адреса относительно окончания записи, нс	t _{H(A-EW)}	0	_	_	_	
Длительность сигнала nCE низкого уровня при записи, нс	tw(nCE)	8	_	_	_	
Длительность сигнала nWE низкого уровня, нс	tw(nWE)	8	_	_	_	
Длительность сигнала nWE низкого уровня при nOE = 0, нс	tw(nWE)1	11	_	_	_	
Длительность сигнала nBLE (nBHE) низкого уровня при записи, нс	$t_{W(nBLE)} \\ t_{W(nBHE)}$	8	-	-	_	

	Буквенное	Норма параметра				
Наименование параметра, единица измерения		Предельно- допустимый режим		Предельный режим		
	990	не менее	не более	не менее	не более	
К1645РУ61У, К1	645РУ61У	V1				
Входное напряжение высокого уровня, В	U _{IH}	2,2	5,5	_	5,8	
Входное напряжение низкого уровня, В	U _{IL}	0	0,8	-0,3	_	
Напряжение высокого уровня, прикладываемое к выходу в состоянии «Выключено», В	U _{OZH}	_	5,5	_	5,8	
Напряжение низкого уровня, прикладываемое к выходу в состоянии «Выключено», В	Uozl	0	_	-0,3	_	
Время цикла считывания информации, нс	t_{CYR}	12	_	_	_	
Время цикла записи информации, нс	t _{CYW}	12	_	_	_	
Время цикла записи информации при пОЕ = 0, нс	t _{CYW1}	15	_	_	_	
Время установления адреса относительно начала записи, нс	tsu(A-sw)	1	_	_	_	
Время удержания сигнала адреса относительно окончания записи, нс	t _{H(A-EW)}	1	ı	ı	ı	
Длительность сигнала nCE низкого уровня при записи, нс	tw(nCE)	10	١	ı	١	
Длительность сигнала nWE низкого уровня, нс	tw(nWE)	10	_	_	_	
Длительность сигнала nWE низкого уровня при nOE = 0, нс	tw(nWE)1	13	_	_	_	
Длительность сигнала nBLE (nBHE) низкого уровня при записи, нс	$t_{W(nBLE)} \\ t_{W(nBHE)}$	10	_	_	_	

Примечания

- 1 Не допускается одновременное воздействие двух и более предельных режимов.
- 2 Начало записи (SW) переход последнего из сигналов на входе nWE, nCE, nBLE или nBHE в состояние низкого уровня, при состоянии «0» на остальных входах.
- 3 Окончание записи (EW) переход первого из сигналов на входе nWE, nCE, nBLE или nBHE в состояние высокого уровня при состоянии <0> на остальных входах

10 Справочные параметры

Значение собственной резонансной частоты:

- микросхем К1645РУ6У, К1645РУ61У не менее 2282 Гц;
- микросхем К1645РУ6У1, К1645РУ61У1 не менее 4654 Гц.

Среднее значение входной, выходной емкостей:

- микросхем К1645РУ6У, К1645РУ61У: $C_I = _ \pi \Phi, C_O = _ \pi \Phi;$
- микросхем К1645РУ6У1, К1645РУ61У1: $C_I = _{--} \pi \Phi$, $C_O = _{--} \pi \Phi$.

Предельная температура p-n перехода кристалла 150 °C.

Таблица 5 – Справочные параметры микросхемы

Наименование параметра, единица измерения,	Буквенное обозна-	Норма параметра		Гемпература среды,°С
режим измерения	чение параметра	не менее	не более	Сред
К1645РУ6У, К1645РУ6	У1			
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу nCE, нс	tPLZ(nCE-D) tPHZ(nCE-D)	-	5	
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого (высокого) уровня по сигналу nCE,нс	t _{PZL(nCE-D)} t _{PZH(nCE-D)}	1,5	l	
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу пОЕ, нс	t _{PLZ(nOE-D)} t _{PHZ(nOE-D)}		5	
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого (высокого) уровня по сигналу пОЕ,нс	t _{PZL(nOE-D)} t _{PZH(nOE-D)}	1,5	I	25, 100, – 60
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу nWE, нс	t _{PLZ(nWE-D)} t _{PHZ(nWE-D)}	_	5	
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого (высокого) уровня по сигналу nWE,нс	t _{PZL(nWE-D)} t _{PZH(nWE-D)}	1,5	1	
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу nBLE, нс	t _{PLZ(nBLE-D)} t _{PHZ(nBLE-D)}	1	5	
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу nBHE, нс	t _{PLZ(nBHE-D)} t _{PHZ(nBHE-D)}	_	5	25, 100,
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого (высокого) уровня по сигналу nBLE, нс	t _{PZL(nBLE-D)} t _{PZH(nBLE-D)}	1,5	_	– 60

Наименование параметра, единица измерения,	Буквенное обозна-	-	рма метра	Гемпература среды,°С
режим измерения	чение параметра	не менее	не более	Темпе
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого (высокого) уровня по сигналу nBHE, нс	tPZL(nBHE-D) tPZH(nBHE-D)	1,5	-	
Время сохранения выходных данных после изменения сигнала адреса, нс	t _{V(A)}	2,5	_	
Время сохранения выходных данных после перехода сигнала nCE в состояние высокого уровня, нс	t _{V(nCE)}	1	_	
Время сохранения выходных данных после перехода сигнала nOE в состояние высокого уровня, нс	t _{V(nOE)}	1	_	
Время сохранения выходных данных после перехода сигнала nBLE в состояние высокого уровня, нс	tv(nBLE)	1	_	
Время сохранения выходных данных после перехода сигнала пВНЕ в состояние высокого уровня, нс	t _{V(nBHE)}	1	_	
К1645РУ61У, К1645РУ6	1У1			
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу nCE, нс	t _{PLZ(nCE-D)} t _{PHZ(nCE-D)}	_	6	
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого (высокого) уровня по сигналу nCE,нс	t _{PZL(nCE-D)} t _{PZH(nCE-D)}	1,5	-	
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу пОЕ, нс	t _{PLZ(nOE-D)} t _{PHZ(nOE-D)}	_	6	
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого (высокого) уровня по сигналу пОЕ,нс	tpzL(nOE-D) tpzH(nOE-D)	1,5	-	25, 125, - 60
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу nWE, нс	t _{PLZ(nWE-D)} t _{PHZ(nWE-D)}	_	6	
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого (высокого) уровня по сигналу nWE,нс	t _{PZL(nWE-D)} t _{PZH(nWE-D)}	1,5	-	
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу nBLE, нс	t _{PLZ(nBLE-D)} t _{PHZ(nBLE-D)}	_	6	
Время задержки распространения сигнала данных при переходе выхода из состояния низкого (высокого) уровня в состояние «Выключено» по сигналу nBHE, нс	t _{PLZ(nBHE-D)} t _{PHZ(nBHE-D)}	_	6	25,
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого (высокого) уровня по сигналу nBLE, нс	tpzl(nBLE-D) tpzh(nBLE-D)	1,5	-	125, - 60

Наименование параметра, об единица измерения, режим измерения	Буквенное обозна- чение параметра	Норма параметра		Гемпература среды,°С
		не менее	не более	Температу среды,°С
Время задержки распространения сигнала данных при переходе выхода из состояния «Выключено» в состояние низкого (высокого) уровня по сигналу nBHE, нс	t _{PZL(nBHE-D)} t _{PZH(nBHE-D)}	1,5	-	
Время сохранения выходных данных после изменения сигнала адреса, нс	tv(A)	2,5	_	
Время сохранения выходных данных после перехода сигнала nCE в состояние высокого уровня, нс	t _{V(nCE)}	1	_	
Время сохранения выходных данных после перехода сигнала nOE в состояние высокого уровня, нс	t _{V(nOE)}	1	_	
Время сохранения выходных данных после перехода сигнала nBLE в состояние высокого уровня, нс	tv(nBLE)	1	_	
Время сохранения выходных данных после перехода сигнала nBHE в состояние высокого уровня, нс	t _{V(nBHE)}	1	_	

11 Габаритные чертежи микросхемы

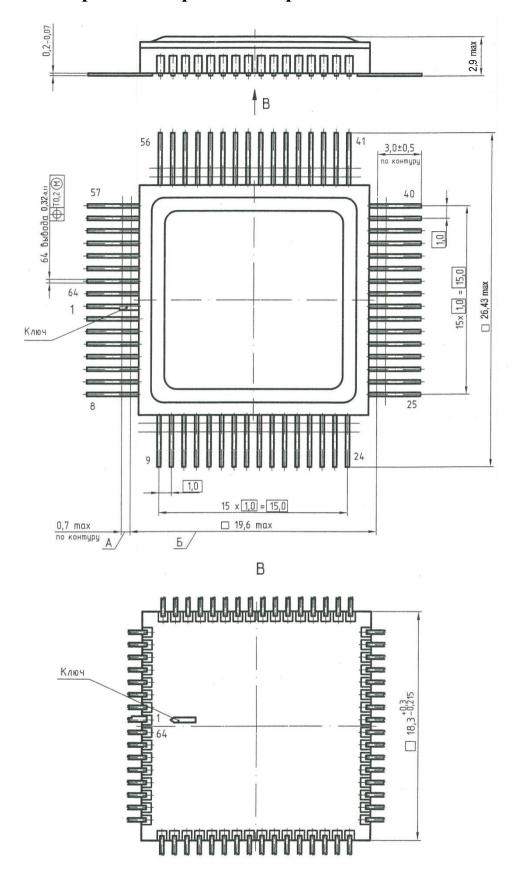


Рисунок 10 – Микросхема в корпусе Н18.64-2В

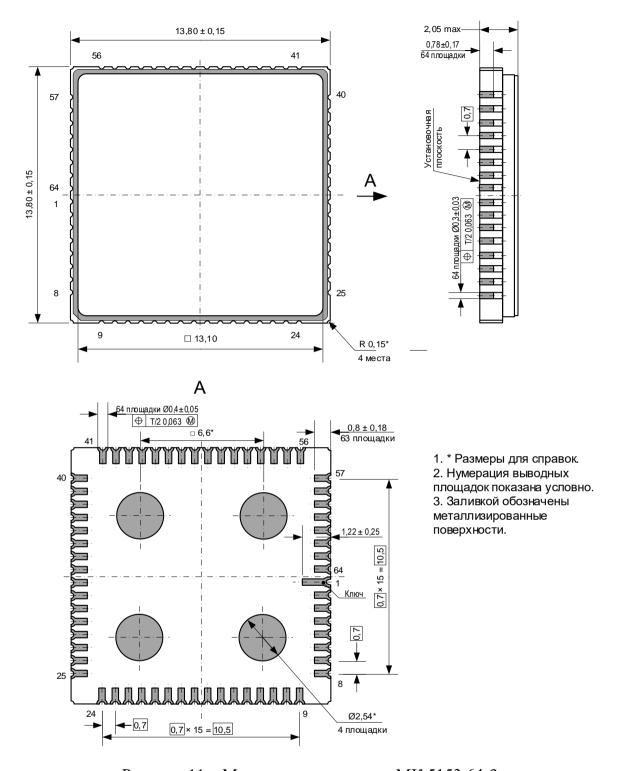


Рисунок 11 – Микросхема в корпусе МК 5153.64-3

12 Информация для заказа

Обозначение	Маркировка	Тип корпуса	Температурный диапазон, °С
К1645РУ6У	22035	H18.64-2B	от – 60 до 100
К1645РУ6У1	22035A	MK 5153.64-3	от – 60 до 100
К1645РУ61У	22045	H18.64-2B	от –60 до 125
К1645РУ61У1	22045A	MK 5153.64-3	от –60 до 125

Условное обозначение микросхем при заказе в договоре на поставку и в конструкторской документации другой продукции должно состоять из:

- наименование изделия микросхема;
- обозначения типа (типономинала);
- обозначения технических условий ТСКЯ.431000.002ТУ;
- обозначения спецификации ТСКЯ.431223.021СП.

Пример обозначения микросхем:

Микросхема К1645РУ6У – ТСКЯ.431000.002ТУ, ТСКЯ.431223.021СП.

Лист регистрации изменений

№ π/π	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов
1	11.07.2024	0.1.0	Введена впервые	
2	23.10.2024	0.2.0	Введение исполнений К1645РУ61У, К1645РУ61У1 с температурой –60125 °C. Температура для микросхем К145РУ6У, К1645РУ6У1 изменена на –60100 °C.	По тексту
			Корректировка таблиц электрических, предельнодопустимых и справочных параметров	15 – 21
3	10.11.2025	1.0.0	Добавлены значения массы микросхем, теплового сопротивления и собственной резонансной частоты	1, 19